Perform Partial Correlation Tests with Frequentist Methods
Source:R/pcor_test_all.r
pcor_test_all.Rd
Computes pairwise partial correlations among all variables in a given dataset, controlling for one or more covariates using frequentist methods. The function returns correlation estimates along with confidence intervals. Note: Bayesian methods are not supported in the current version.
Arguments
- dat
A data frame or matrix containing numeric variables of interest.
- control
A data frame, matrix, or numeric vector containing covariates to control for.
- triangle
Character. Specifies which part of the correlation matrix to return:
"upper"
,"lower"
, or"full"
(default:"upper"
).- alternative
Character. Specifies the alternative hypothesis for the frequentist test:
"two.sided"
,"less"
, or"greater"
(default:"two.sided"
).- method
Character. Specifies the correlation method for the frequentist test:
"pearson"
,"kendall"
, or"spearman"
(default:"pearson"
).- conf.level
Numeric. The confidence level for confidence intervals (default:
0.95
).- cor
Logical. If
TRUE
, computes frequentist correlation coefficients (default:TRUE
).
Value
A list containing:
- all
A data frame with all computed correlation statistics.
- table_XX
A data frame corresponding to a table named "table_XX", where "XX" is derived from the output variables (e.g.,
"table_cor"
,"table_p"
). The content of the table depends on the provided inputs.
Examples
results <- pcor_test_all(mtcars[, 1:3], control = mtcars[, 4:5])
results$all # View detailed results in a tidy format
#> var_row var_col row col cor lower upper t df
#> 1 mpg cyl 1 2 -0.3302412 -0.6170915 0.034083055 -1.851339 28
#> 2 mpg disp 1 3 -0.3615918 -0.6386623 -0.001520729 -2.052225 28
#> 3 cyl disp 2 3 0.5077685 0.1805229 0.733801007 3.118837 28
#> p n_pair n_na
#> 1 0.074695109 32 0
#> 2 0.049602794 32 0
#> 3 0.004177802 32 0
results$table_cor # View partial correlation matrix
#> mpg cyl disp
#> mpg NA -0.3302412 -0.3615918
#> cyl NA NA 0.5077685
#> disp NA NA NA