This function conducts a trend analysis by applying contrast tests to a given dataset.
Usage
trend_test(
dat,
order = 1:3,
paired = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
verbose = TRUE
)
Arguments
- dat
A data frame or matrix containing the data. Columns represent different levels of the independent variable.
- order
An integer vector specifying the trend orders to test. Defaults to
1:3
.- paired
Logical. If
TRUE
, a paired contrast test is performed. Defaults toFALSE
.- alternative
A character string specifying the alternative hypothesis. One of
"two.sided"
,"less"
, or"greater"
. Defaults to"two.sided"
.- conf.level
Confidence level for the test. Defaults to
0.95
.- verbose
Logical. If
TRUE
, displays messages. Defaults toTRUE
.
Value
A data frame containing the results of the contrast tests, with an additional column indicating the trend order.
Details
The function constructs contrast vectors for specified trend orders using polynomial contrasts (contr.poly
).
Then, contrast_test()
is applied to test each contrast.
For more details on the testing procedure, refer to the documentation of contrast_test()
.
See also
contrast_test()
for details on the contrast testing procedure.
Examples
# Example dataset with 5 conditions
dat <- matrix(rnorm(50), nrow = 10, ncol = 5)
# Perform trend analysis for 1st and 2nd order trends
trend_test(dat, order = 1:2)
#> order weights estimate lower upper t F
#> 1 1 -2,-1,0,1,2 0.2002632 -1.840372 2.240898 0.1976595 0.03906927
#> 2 2 2,-1,-2,-1,2 -1.2297319 -3.644244 1.184780 -1.0258004 1.05226647
#> df_error SS_contrast SS_error SS_total SS_effect p eta2
#> 1 45 0.04010537 46.19337 47.9603 1.766928 0.8442017 0.0008362201
#> 2 45 1.08017188 46.19337 47.9603 1.766928 0.3104684 0.0225222092
#> peta2 cohens_f n_total n_total_na
#> 1 0.000867453 0.02946534 50 0
#> 2 0.022849396 0.15291730 50 0