Converts partial eta squared (\(\eta_p^2\)) to Cohen's f using the standard definition in Cohen (1988).
Details
The conversion is defined as: $$f = \sqrt{\eta_p^2 / (1 - \eta_p^2)}$$
This follows from the inverse relationship: $$\eta_p^2 = \frac{f^2}{1 + f^2}$$
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Examples
# Convert a single partial eta squared value
peta2_to_cohensf(0.06)
#> [1] 0.2526456
# Convert multiple values
peta2_to_cohensf(c(0.01, 0.06, 0.14))
#> [1] 0.1005038 0.2526456 0.4034733